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Abstract

Let Z be the ring of integers, and let Fp[t] be the ring of polynomials in one variable
defined over the finite field Fp of p elements. Since the characteristic of Z is 0, while that of
Fp[t] is the positive prime number p, it is a striking theme in arithmetic that these two rings
faithfully resemble each other. The study of the similarity and difference between Z and Fp[t]
lies in the field that relates number fields to function fields. In this talk, we will investigate
some Diophantine problems in the settings of Z and Fp[t], including Fermat’s last theorem
and Waring’s problem. This essay will be presented in five sections: Fermat’s last theorem
and Waring’s problem in Z; An Analogies between Z and Fp[t]; Fermat’s last theorem in Fp[t],
Waring’s problem in Fp[t] and Taylor Series in Fp[t].

1. Fermat’s Last Theorem and Waring’s problem in Z

Figure 1: Pierre de Fermat and Edward Waring

From middle school, we have heard about the Pythagorean Theorem,

Figure 2: Pythagorean Triangle

We have

x2 + y2 = z2
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The triples (x, y, z) = (3, 4, 5) and (5, 12, 13) are primitive solutions.
Euclid’s Formula. Let N = {1, 2, . . . }. ∀a, b ∈ N with a > b, we can take

x = a2 − b2, y = 2ab, z = a2 + b2

Finding all right triangles with integer side-lengths is equivalent to solving the Diophantine equa-
tion x2 + y2 = z2.

Question. How about xn + yn = zn with n ∈ N and n ≥ 3?

Fermat’s Last Theorem. For n ∈ N with n ≥ 3, the equation xn + yn = zn has no solu-
tion with x, y, z ∈ N.
The theorem was proved by Frey, Serre, Ribet, Taylor and Wiles in 1994. The proof involves the
use of elliptic curves, modular forms and Galois representations.

In Euclid’s formula, we set z = a2 + b2.

Question. Can we get all positive integers z in this way?

Solution. No, since 3 ̸= a2+b2 with a, b ∈ N. More generally, since a2 ≡ 0, 1 (mod 4) and b2 ≡ 0, 1
(mod 4), we can only get those z ∈ N with z ≡ 0, 1, 2 (mod 4). A

Question. Can we get all positive integers using more variables?

Idea. 1 = 12, 2 = 12 + 12, 3 = 12 + 12 + 12, 4 = 22, 5 = 22 + 12, 6 = 22 + 12 + 12,
7 = 22 + 12 + 12 + 12, 8 = 22 + 22, 9 = 32, . . . , 2023 = 372 + 252 + 52 + 22, . . . A

Question. Can we write all positive integers as a sum of at most four squares? More generally,
for k ∈ N with k ≥ 2, can we write all positive integers as a sum of a bounded number of kth powers?

Waring’s Problem. For k ∈ N with k ≥ 2, can we find an integer s = s(k) such that for
all n ∈ N, there exists x1, . . . , xs ∈ N ∪ {0} with

n = xk1 + xk2 + · · ·+ xks =

s∑
i=1

xki

Let g(k) denote the least integer s = s(k) such that the above equation holds for all n ∈ N. In
1770, Lagrange proved g(2) = 4. Before 1909, only known cases are k = 2, 3, 4, 5, 6, 7, 8, 10. In
1909, Hilbert proved that g(k) < ∞ for every k ≥ 2.

Consider

n = 2k

⌊(
3

2

)k
⌋
− 1 < 3k
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For the most efficient way to represent n: Use
(⌊(

3
2

)k⌋− 1
)
copies of 2k and (2k +1) copies of 1k.

Thus we obtain a result of Euler that

g(k) ≥ 2k +

⌊(
3

2

)k
⌋
− 2

Theorem (Mahler, 1957). The equality holds for all but finitely many k.

Modern Waring’s Problem. For k ∈ N with k ≥ 2, let G(k) denote the least integer s = s(k)
such that for all n ∈ N sufficiently large, there exist x1, . . . , xs ∈ N such that

n = xk1 + xk2 + · · ·+ xks =

s∑
i=1

xki

We know that G(k) ≤ g(k). Only known cases: G(2) = 4 and G(4) = 16.

Hardy-Littlewood (1920), Hua(1938). G(k) ≤ 2k + 1
The bound was improved by Vinogradov, Vaughan and others.

Theorem (Wooley, 1992). For large values of k, G(k) ≤ k(log k + log log k +O(1)).
Recently in 2022, the bound was improved drastically,

Theorem (Brudern & Wooley, 2022). For large values of k, G(k) ≤ k(log k +O(1))
We will introduce an important method by Hardy-Littlewood-Ramanujan that drastically rev-

olutionized analytic number in last 100 years. This technique is called the circle method.
Fix k, s ∈ N with k ≥ 2. For n ∈ N, let

R(n) = Rs,k(n) =

∣∣∣∣∣
{
n =

s∑
i=1

xki : xi ∈ N

}∣∣∣∣∣
Note that xi ≤ k

√
n. For α ∈ R, let e(α) = 22πiα. For m ∈ Z,∫ 1

0
e(αm) dα =

{
1 if m = 0

0 otherwise

It follows that ∑
x1≤ k√n

· · ·
∑

xs≤ k√n

∫ 1

0
e

(
α

(
s∑

i=1

xki − n

))
dα = R(n)

Idea. To estimate ∑
x≤ k√n

e(αxk)
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we relate it to the geometric series ∑
x≤ k√n

e(αx)

Weyl’s Differencing, Consider∣∣∣∣∣∣
∑

x≤ k√n

e(αxk)

∣∣∣∣∣∣
2

=
∑

x≤ k√n

∑
(x+h)≤ k√n

e(α((x+ h)k − xk))

where (x+h)k −xk is a polynomial of degree (k− 1) in x. After differencing (k− 1)-times, we get
a linear polynomial (i.e., a geometric series) with leading coefficient k!. A

2. Analogies between Z and Fp[t]

We will first observe the generalized analogy between Z and F[x], where F [x] is a polynomial
ring.

Z F [x]

elements m f(x)
lowest factor prime p irreducible polynomial h(x)

size |m| deg f
units {±1} F× (or F ∗)

positive (Z \ {0})/⟨±1⟩ ∼= N (F [x] \ {0})/F× ∼= {monic polynomials}
unique factorization m = ±pα1

1 · · · pαn
n , pi prime f = clα1

1 · · · lαr
r , li = li(t) monic, c ∈ F×

ideals ⟨n⟩ : unique if n ∈ N ⟨h(x)⟩ : h(x) is monic
quotient rings Z/⟨n⟩ is a field ⇐⇒ n is prime F [x]/⟨h(x)⟩ is a field ⇐⇒ h(x) is irreducible.

Let Z be the set of integers. We know that the set is closed under + and · and has a ring
structure. We measure n ∈ Z by |n|. Z is an integral domain and its fraction field is Q. R is the
completion of Q with respect to | · |.

Let p be a prime and Fp the finite field of p elements. Let

Fp[t] =

{
n∑

i=0

ait
i : n ∈ N ∪ {0} and ai ∈ Fp

}

be the set of polynomials in t over Fp. We know that the set is closed under + and · and has a
ring structure. We measure f(t) ∈ Fp[t] by deg f or ⟨f⟩ = pdeg f . Fp[t] is an integral domain and
its fraction field is Fp(t). Fp(

(
1
t

)
) is the completion of Fp(t) with respect to ⟨·⟩, where

Fp

((
1

t

))
=

∑
i≤r

ait
i : ai ∈ Fp


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We recall that for Fermat’s last theorem, the equation

xn + yn = zn (n ≥ 3)

involves both · and +. Similarly, for Waring’s problem, the equation

n =

s∑
i=1

xki (k ≥ 2)

also uses both · and +

Question. Fermat’s last theorem and Waring’s problem in Fp[t]?

3. Fermat’s Last Theorem in Fp[t]

Let n ∈ N with n ≥ 3. For f(t), g(t), h(t) ∈ Fp[t] with

f(t)n + g(t)n = h(t)n

we say (f, g, h) is a non-trivial solution if deg(f), deg(g), deg(h) are ≥ 1. We notice that for f(t),
g(t), h(t) ∈ Fp[t],

f(t)p + g(t)p = (f(t) + g(t))p = h(t)p

where h(t) = f(t) + g(t). Hence there are infinitely many non-trivial solutions.

Theorem (Fermat’s Last Theorem in Fp[t]). For n ∈ N with n ≥ 3 and gcd(n, p) = 1,
the equation

f(t)n + g(t)n = h(t)n

has no non-trivial solution in Fp[t].

Proof. Suppose that we have a non-trivial solution with gcd(f, g) = 1 and deg(f) = deg(h) ≥
deg(g). Differentiate the equation to get

nfn−1f ′ + ngn−1g′ = nhn−1h′

Since gcd(n, p) = 1, by multiplying both sides by h,

fn−1f ′h+ gn−1g′h = hnh′ = fnh′ + gnh′

The last equality holds since hn = fn + gn. So we have

fn−1(f ′h− fh′) = gn−1(gh′ − g′h)

Since gcd(f, g) = 1,

fn−1 | (gh′ − g′h)
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So,

(n− 1) deg f ≤ deg g + deg h− 1

Since deg h = deg f , we get

(n− 2) deg f ≤ deg g − 1

Since n ≥ 3, it follows that deg f < deg g, a contradiction. Hence, there is no non-trivial solution
to fn + gn = hn. A

4. Waring’s Problem in Fp[t] Let k ∈ N with k ≥ 2. We recall that G(k) denotes the least
integer s = s(k) such that for all n ∈ N sufficiently large, there exists x1, . . . , xs ∈ N such that

n =
s∑

i=1

xki

It is attempting to define Gp(k) to be the least integer s = s(k) such that for all f(t) ∈ Fp[t] with
⟨f⟩ sufficiently large, there exist y1(t), . . . , ys(t) ∈ Fp[t] such that

f(t) =
s∑

i=1

yi(t)
k

Intrinsic obstructions exist in Fp[t]. For example, p | k,

f(t) =
s∑

i=1

yi(t)
k =

(
s∑

i=1

yi(t)
k
p

)p

So f(t) ∈ Fp[t
p], which is not the whole Fp[t]. Let Jkp[t] denote the additive closure of yk with

y ∈ Fp[t]. Consider only f ∈ Jkp[t] with ⟨f⟩ sufficiently large. Let

Rp(f) =

∣∣∣∣∣
{
f(t) =

s∑
i=1

yi(t)
k : yi(t) ∈ Fp[t]

}∣∣∣∣∣
We require ⟨yi⟩ ≤ ⟨f⟩

1
k · c, where 1 ≤ c = cp,f < p2.

We recall that the analogy of R is Fp((1/t)). One can define ep : Fp((1/t)) → C such that for
h = h(t) ∈ Fp[t], ∫

⟨β⟩<1
ep(βh) dβ =

{
1 if h = 0

0 otherwise

To estimate ∑
⟨y⟩≤c⟨f⟩1/k

ep(βy
k)
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we relate it to the geometric series ∑
⟨y⟩≤c⟨f⟩1/k

ep(βy)

by applying Weyl’s differencing (k − 1)-times. This gives us a degree 1 polynomial with leading
coefficient k!. We get k! = 0 in Fp[t] if k ≥ p which isn’t good!

Theorem (Kubota, 1971). If k < p, then Gp(k) ≤ 2k + 1.

Theorem (Car, Cherly, Gallardo). G2(3) ≤ 10.

Theorem (Wooley & L., 2010). If k < p, then Gp(k) ≤ k(log k + log log k + O(1)). If
k > p and gcd(k, p) = 1, then Gp(k) ≤ Ck(log k + log log k + O(1)), where 1 ≤ C = Ck,p ≤ 4

3 . If
p | k, then Gp(k) = Gp(k/p).

Idea. Use smooth polynomials and the large sieve inequality to replace Weyl’s differencing. In
order to get asymptotic estimates for smooth polynomials, we need to order polynomials one by
one. One can use refine ordering on Fp[t]. Consider the map: Fp[t] → N ∪ {0} defined by

n∑
i=0

ait
i 7→

n∑
i=0

aip
i

This ordering satisfies usual estimates for arithmetic progressions and asymptotic estimates for
smooth polynomials. A

So, Result of Fermat vs Waring in terms of difficulties:

• In Z, Fermat wins!

• In Fp[t], Waring wins!

5. Taylor Series in Fp[t]

For F (x) ∈ Z[x] and a ∈ Z, if we write

F (x) =

∞∑
i=0

ai(x− a)i = a0 + ai(x− a) + a2(x− a)2 + . . .

then a0 = F (a), a1 = F ′(a) and a2 = F (2)(a)/2!, . . .
In general,

ai =
F (i)(a)

i!

Question. For G(x) ∈ (Fp[t])[x] and b ∈ Fp[t], can we write

G(x) =

∞∑
i=0

bi(x− b)i with bi =
G(i)(b)

i!
?

We have i! = 0 in Fp[t] if i ≥ p, which is an issue.
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6. Final Remarks

All of the above results hold with Fp replaced by Fq, where q is a power of p. How about gp(k),
the least integer s = s(k) such that for all f(t) ∈ Jkp[t], there exist y1(t), . . . , ys(t) ∈ Fp[t] such that

f(t) =

s∑
i=1

yi(t)
k

with ⟨yi⟩ ≤ c k
√
⟨f⟩? The problem is more difficult than g(k).
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